Deep learning Regression ¹æ¹ý

   Á¶È¸ 5208   Ãßõ 0    

안녕하세요


시계열 데이터를 Tensorflow로 Regression을 해서 값을 예측 해 보고 있습니다.

단순 NN, CNN, RNN(LSTM) 으로 Regression을 구현 해 봤습니다.

3개 방법 모두 Loss가 25% 수준에서 더 줄지 않는 상태 입니다.

다른 테크닉을 시도 해 보면

더 개선이 가능할까요 아니면 이 데이터가 가지는 한계라고 봐야 할까요?

다른 테크닉을 시도 해 본다면 어떤게 더 있을까요?


감사합니다.

ªÀº±Û Àϼö·Ï ½ÅÁßÇÏ°Ô.
Midabo 2017-04
Hidden layer ¸¦ ¾î¶»°Ô µÎ¼Ì´ÂÁö¿ä
     
nshhsn 2017-04
nn Àº 20°³±îÁö ÁÖ¾î ºÃ°í¿ä
CNNÀº 4°³·Î conv2d->pool Çß¾ú½À´Ï´Ù.
LSTMÀº TimeStepÀ» 60À¸·Î 256 °³ È÷µç ·¹À̾ ÁÖ¾ú½À´Ï´Ù.
3°³°¡ ´Ù µ¿ÀÏÇÑ loss¿¡¼­ ³»·Á°¡Áö ¾Ê´Â ÀÌÀ¯°¡ ÀÖÀ»±î¿ä?
          
Midabo 2017-04
ÀÏ´Ü iteration °£°ÝÀ» Á» ÃÎÃÎÈ÷ Áּż­ Çѹø Çغ¸´Â°Ô ÁÁÁö ¾ÊÀ»±î¿ä? ºñ¿ëÇÔ¼ö ÀúÁ¡À» Áö³ªÃÆÀ» ¼öµµ ÀÖ°Ú´Ù´Â ´À³¦ÀÔ´Ï´Ù.
               
nshhsn 2017-04
°¨»çÇÕ´Ï´Ù.

iteration °£°ÝÀ» ÃÎÃÎÀÌ ÇÑ´Ù´Â °ÍÀÌ ¹èÄ¡ Å©±â¸¦ ÀÛ°Ô ÇØ º¸´Â °ÍÀ» Àΰ¡¿ä?
¾Æ´Ï¸é ´Ù¸¥ °ÍÀ» ÀÇ¹Ì Çϳª¿ä?

Ȥ½Ã ºñ¿ë ÇÔ¼öÀÇ ÀúÁ¡À» ¾Ë ¼ö ÀÖ´Â ¹æ¹ýÀÌ ÀÖÀ»±î¿ä?
                    
Midabo 2017-04
ºñ¿ëÇÔ¼öÀÇ ÀúÁ¡À» ¸ð¸£±â ¶§¹®¿¡ ¼ö¸¹Àº ¾Ë°í¸®ÁòÀÌ µîÀåÇÑ °ÍÀÌÁÒ ^^

´Ù¸¸, ºñ¿ëÇÔ¼ö¸¦ ¹ÌºÐ°¡´ÉÇÏ´Ù¸é ¾î¶² Á¡¿¡¼­ ÀÎÀÚ¸¦ Áõ°¡½ÃÅ°°Å³ª °¨¼Ò½Ãų¶§ ºñ¿ëÇÔ¼ö°ªÀÌ ¶³¾îÁö°Å³ª ¿Ã¶ó°¥Áö ¾Ë¼ö ÀÖÁö¿ä

±×·¡¼­ ÀÎÀÚ°ªÀ» Áõ°¡/°¨¼Ò½ÃÅ°¸ç ¶Ç °¡ÁßÄ¡¸¦ ±¸ÇÏ°í ºñ¿ëÇÔ¼ö¸¦ ±¸ÇÏ°í ºñ¿ëÇÔ¼ö¸¦ ¹ÌºÐÇÏ´Â °úÁ¤Àº ¹Ýº¹ÇÏ´Â°Ô Gr. descent ¹æ¹ýÀÔ´Ï´Ù.

¿ä Áõ°¡/°¨¼Ò ½ÃÅ°´Â ÆøÀ» Á¶ÀýÇÏ´Â°Ô Áß¿äÇÑ Æ©´×Áß ÇϳªÀε¥, ÆøÀÌ ³Ê¹« Á¼À¸¸é ¿¬»êÀÌ ³Ê¹« ¿À·¡°É¸®°í¿ä, ÆøÀÌ ³Ê¹« ³ÐÀ¸¸é ÀÌ»óÀûÀÎ ºñ¿ëÇÔ¼ö ÀúÁ¡À» Áö³ªÄ¥ ¼ö ÀÖ½À´Ï´Ù.
                         
nshhsn 2017-04
´äº¯ °¨»çÇÕ´Ï´Ù
Á¦ °æ¿ì¿¡´Â  learning rate ¸¦ ÁÙ¿© ºÁ¾ß°Ú³×¿ä
Time Series´Â DNN°ú CNN¿¡¼­ LearningÀÌ Àß ¾È µË´Ï´Ù.
LSTMÀ» »ç¿ëÇغ¸¼Ì´Ù´Ï ÀÌÀ¯´Â Àß ¾Æ½Ç°Å¶ó »ý°¢µÇ¾î ¼³¸íÀº »ý·«ÇÏ°Ú½À´Ï´Ù.
±×³ª¸¶ DNNÀº Learning Data¸¦ PreprocessingÇؼ­ »ì¦ ¼º´ÉÀ» °³¼±Çغ¼ ¼ö´Â ÀÖ±äÇѵ¥...
CNNÀ» Time Series Data·Î LearningÇß´Ù´Â°Ç ²Ï Ȳ´çÇÑ ¾ê±â±º¿ä;;;
Á÷Á¢ LSTM AlgorithmÀ» ±¸ÇöÇؼ­ LearningÇغ¸´Ï Àß ¾È µÈ´Ù¸é Algorithm ±¸Çö¿¡ ¹®Á¦°¡ ÀÖÀ» ¼ö ÀÖÁö¸¸
TensorFlow¸¦ »ç¿ëÇÏ¼Ì´Ù´Ï Feature SelectionÀÇ ¹®Á¦°¡ ¾Æ´Ï¶ó¸é Learning DataÀÇ Stationary ¹®Á¦ÀÔ´Ï´Ù.
TensorFlow, Caffe, Torch °°Àº Deep Learning API ´öºÐ¿¡ Machine Learning Àü°øÀÚ°¡ ¾Æ´Ï¾îµµ ´©±¸³ª ½±°Ô
Deep LearningÀ» ½ÃµµÇغ¼ ¼ö Àִ ȯ°æÀº Á¶¼ºµÇ¾úÁö¸¸, Machine Learning AlgorithmÀ» Á÷Á¢ ±¸ÇöÇÒ ¼ö ÀÖ´Â
¼öÁØÀÇ Background°¡ ¾øÀÌ´Â Deep LearningÀ¸·Î ³²µéÀÌ Çغ» °ÍÀÇ Reproduction ÀÌ»óÀº ¾î·Æ½À´Ï´Ù.
     
nshhsn 2017-04
¿©·¯ ¹æ¹ý¿¡¼­ °øÅëÀûÀ¸·Î loss 25%°¡ ¹«¾ùÀ» ÀǹÌÇÏ´ÂÁö »ý°¢ÇØ º¸´Ï
Ãâ·ÂÀÇ ¹üÀ§°¡ 0~1ÀÏ ¶§ ¸ðµç ÀԷ¿¡ ´ëÇؼ­ Ãâ·ÂÀ» 0.5 ·Î ³» º¸³Â´Ù´Â ¶æÀÎ°Í °°½À´Ï´Ù
ÀÔ·Â µ¥ÀÌÅÍ¿¡ Á¤º¸°¡ ¾ø¾ú´Ù´Â Àǹ̰¡ µÉ±î¿ä?
          
¹«¾Æ 2017-04
Ȥ ±×·± °æ¿ì°¡
·Î¶Ç ¹øÈ£ ¿¹Ãø±â °°Àº °Í ¾Æ´Ò±î ÇÕ´Ï´Ù.. ^^


QnA
Á¦¸ñPage 2911/5697
2014-05   5084443   Á¤ÀºÁØ1
2015-12   1621662   ¹é¸Þ°¡
2012-07   5218   ±è°Ç¿ì
2005-10   5218   ³ëÇϼ®
2014-02   5218   Âî´Ï¶Ñ´Ï¾Æ¹ü
2006-02   5218   ¹Ú¿ë
2019-05   5218   ºÒ¾Ë¿Õ
2006-08   5218   ±è°Ç¿ì
2006-01   5218   ¿À»óÈÆ
2016-05   5218   ¿¡À̾¾ÇÇÀ¯
2005-07   5218   ¾ÈâÁØ
2012-08   5218   À̼±È£
2012-08   5218   Æò¹üÇÑÀÌ
2009-01   5218   È«Á¾¿î
2015-02   5219   2CPUÃÖÁÖÈñ
2007-11   5219   ¿À¼º±â
2016-08   5219   ¿£Áø¿¢½º
2006-01   5219   À¯»ç¿ë
2013-04   5219   Çà¾Æ¹ü
2006-01   5219   ÀÌÃæÈÆ
2007-11   5219   ±èÅÂÇö
2012-09   5219   ³ÃöÇÑÇϴüÒ