Neural network ÀÌÁø ºÐ·ù½Ã ³×Æ®¿öÅ©¿¡ µû¸¥ ¼º´É °³¼±

   Á¶È¸ 3599   Ãßõ 0    

안녕하세요


tensorflow를 이용해서 NN으로 이진 분류 문제를 풀어 보려고 합니다.

입력데이터는 한 Pixel에 -1,1,0 의 값을 갖는 86X10의 그림입니다.


Full connected layer로 구성 해서 학습 시킬 경우에

(Relu, dropout 적용, Layer 5개)

트레인 셋(45만개)의 정확도는 계속 올라가서 70%까지 상승하나

테스트 셋(15만개)의 정확도가 49% 이상으로 올라가지 않습니다.

학습이 되지 않는다고 봐야될 것 같은데요


이런 경우에 RNN, CNN을 적용 해 보면 테스트 셋의 정확도가 올라갈 수 있을까요?


MNIST 예제의 경우에는 NN으로도 90%정도 정확도가 나오고

CNN으로 하면 정확도가 상승하는데

이런식으로 NN에서 학습이 안되는 경우에도 효과가 있을까요?


아니면 Regularization을 하는게 도움이 될까요?




ªÀº±Û Àϼö·Ï ½ÅÁßÇÏ°Ô.


QnA
Á¦¸ñPage 1758/5688
2015-12   1540850   ¹é¸Þ°¡
2014-05   5005105   Á¤ÀºÁØ1
2017-12   6151   Sunrise
2017-12   3768   ¿øÁÖ¸ÚÁøµ¢Ä¡
2017-12   4727   QS¿ÕÅëÅ°¼Õ¡¦
2017-12   3733   ½ÅÀº¿Ö
2017-12   3983   ¿ÀÆÛ·¹ÀÕ
2017-12   3848   Ãʺ¸IT
2017-12   3770   NiteFlite9
2017-12   4987   °ËÀºÄá
2017-12   5212   MPerformance
2017-12   5911   NSECJ
2017-12   3926   ³ª¶ó»ç¶û
2017-12   5351   ³ª¶ó»ç¶û
2017-12   4565   AplPEC
2017-12   9318   µ¿Çöºü
2017-12   4456   À嵿°Ç2014
2017-12   5188   Sakura24
2017-12   4819   ³ª¶ó»ç¶û
2017-12   4420   SOGm
2017-12   16406   Ãʺ¸IT
2017-12   5138   ±Í¿±